Abstract We report on the interaction between intentional potassium doping of thin film Cu(In,Ga)Se 2 (CIGS) solar cells, CIGS absorber composition, and device efficiency. Up to now high efficiency CIGS solar cells could not be produced with a gallium/(gallium + indium) ratio higher than 35%. The new doping process step does not only increase solar cell conversion efficiencies up to 20.8%, but also allows a shift in the CIGS absorber composition towards higher gallium content whilst maintaining this high efficiencies level. We find that the saturation of the open circuit voltages for higher gallium content that is normally observed can partially be overcome by the new doping procedure. This observation leads us to the conclusion that even on this high performance level CIGS solar cells still hold a potential for further development beyond the record values reported here. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Support the authors with ResearchCoin