Paper
Document
Download
Flag content
0

HLA-E Surface Expression Depends on Binding of TAP-Dependent Peptides Derived from Certain HLA Class I Signal Sequences

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Previous studies showed that HLA-E was expressed in lymphoblastoid cell line (LCL) 721.221 cells, but surface expression was lacking. To determine the signals controlling surface expression, we constructed a series of hybrid genes using complementary portions derived from the HLA-E and HLA-A2 genes. In this manner, a hybrid of HLA-E was identified, designated AEH, which differed from HLA-E by having the HLA-A2 signal sequence substituting for the HLA-E leader peptide. Transfection of LCL 721.221 cells with AEH induced HLA-E surface expression. Analysis of peptides bound to HLA-E revealed that a nonamer peptide derived from the A2 signal sequence was the predominant peptide bound. LCL 721.221 cells transfected with certain class I genes, including HLA-G, were also sufficient to promote peptide binding and HLA-E surface expression without increasing the level of HLA-E heavy chain synthesis. Peptides bound to HLA-E consisted of nine amino acids, with methionine at position 2 and leucine in the carboxyl-terminal position, and were nearly identical to the leader sequence-derived peptide previously shown to be a predominant peptide bound to the murine Qa-1 Ag. Signal peptides derived from certain HLA-B proteins with threonine in position 2 only marginally up-regulated HLA-E surface expression in .221 cells. An examination of HLA-E peptide binding in the TAP negative cell line .134 indicated that peptide binding to HLA-E was dependent on a functional TAP heterodimer regardless of whether peptide was available in cis, as in the AEH construct, or in trans, as in the class I transfectants of .221 cells.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.