Innovative numerical approach was employed to demonstrate nanofluid MHD flow through a porous enclosure. To model porous medium, Darcy law has been employed. Radiation impact was included in energy equation. The new method (CVFEM) has been employed due to complex shape of porous cavity. Aluminium oxide with different shapes was dispersed in to water. Viscosity of nanofluid changes with Brownian motion impacts. Roles of radiation, buoyancy and Hartmann number on treatment of alumina were displayed. Results prove that convection detracts with augment of magnetic forces. Radiation can reduce the temperature gradient.
Support the authors with ResearchCoin