We measure the evolution of the stellar mass function (SMF) from z=0-1 using multi-wavelength imaging and spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS) and the Sloan Digital Sky Survey (SDSS). From PRIMUS we construct an i10^11 Msun galaxies since z~1. Dividing the sample into star-forming and quiescent using an evolving cut in specific star-formation rate, we find that the number density of ~10^10 Msun star-forming galaxies stays relatively constant since z~0.6, whereas the space-density of >10^11 Msun star-forming galaxies decreases by ~50% between z~1 and z~0. Meanwhile, the number density of ~10^10 Msun quiescent galaxies increases steeply towards low redshift, by a factor of ~2-3 since z~0.6, while the number of massive quiescent galaxies remains approximately constant since z~1. These results suggest that the rate at which star-forming galaxies are quenched increases with decreasing stellar mass, but that the bulk of the stellar mass buildup within the quiescent population occurs around ~10^10.8 Msun. In addition, we conclude that mergers do not appear to be a dominant channel for the stellar mass buildup of galaxies at z10^11 Msun) quiescent galaxies.
Support the authors with ResearchCoin