The patterning of skeletal muscle is thought to depend upon signals provided by motor neurons. We show that AChR gene expression and AChR clusters are concentrated in the central region of embryonic skeletal muscle in the absence of innervation. Neurally derived Agrin is dispensable for this early phase of AChR expression, but MuSK, a receptor tyrosine kinase activated by Agrin, is required to establish this AChR prepattern. The zone of AChR expression in muscle lacking motor axons is wider than normal, indicating that neural signals refine this muscle-autonomous prepattern. Neuronal Neuregulin-1, however, is not involved in this refinement process, nor indeed in synapse-specific AChR gene expression. Our results demonstrate that AChR expression is patterned in the absence of innervation, raising the possibility that similarly prepatterned muscle-derived cues restrict axon growth and initiate synapse formation.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.