To investigate the fabric performance of tight tops and the influence of clothing pressure on the relative slip between clothing and the human body, a simulation model based on finite element analysis is proposed. This model simulates the relative slip distance under dynamic conditions. Initially, a three-dimensional model for numerical simulation was established through reverse engineering. Subsequently, material properties and boundary conditions were defined. Finally, the model was analyzed using ANSYS Workbench, and the obtained results were compared with the stretch ratio of the skin on the human back. The results indicate that, under constant conditions, the Young’s modulus of the fabric has a greater influence on the slip and shows a significant positive correlation, with correlation coefficients ( R) all exceeding 0.99. The impact of clothing pressure on sliding is relatively small, and the sliding distance decreases with an increase in clothing pressure. In addition, it has been demonstrated that there is a significant correlation ( p < 0.05) between the relative sliding distance of clothing and the stretch ratio of the skin. The study could provide a helpful guideline for the design of smart clothing, and it can provide valuable insights for various applications, such as sportswear and medical apparel.
Support the authors with ResearchCoin