Paper
Document
Download
Flag content
0

Co-Regulation ofCYP3A4andCYP3A5and Contribution to Hepatic and Intestinal Midazolam Metabolism

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

We recently demonstrated that a variant allele of CYP3A5(CYP3A5*3) confers low CYP3A5 expression as a result of improper mRNA splicing. In this study, we further evaluated the regulation of CYP3A5 in liver and jejunal mucosa from white donors. For all tissues, high levels of CYP3A5 protein were strongly concordant with the presence of a wild-type allele of theCYP3A5 gene (CYP3A5*1).CYP3A5 represented greater than 50% of total CYP3A content in nearly all of the livers and jejuna that carried the CYP3A5*1wild-type allele. Overall, CYP3A5 protein content accounted for 31% of the variability in hepatic midazolam hydroxylation activity. Improperly spliced mRNA (SV1-CYP3A5) was found only in tissues containing a CYP3A5*3 allele. Properly splicedCYP3A5 mRNA (wt-CYP3A5) was detected in all tissues, but the median wt-CYP3A5 mRNA was 4-fold higher in CYP3A5*1/*3 livers compared withCYP3A5*3/*3 livers. Differences inwt-CYP3A5 and CYP3A4 mRNA content explained 53 and 51% of the interliver variability in CYP3A5 and CYP3A4 content, respectively. Hepatic CYP3A4 and CYP3A5 contents were not correlated when all livers were compared. However, forCYP3A5*1/*3 livers, levels of the two proteins were strongly correlated (r = 0.93) as werewt-CYP3A5 and CYP3A4 mRNA (r = 0.76). These findings suggest thatCYP3A4 and CYP3A5 genes share a common regulatory pathway for constitutive expression, possibly involving conserved elements in the 5′-flanking region.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.