Paper
Document
Download
Flag content
0

Core-Shell Nanostructured “Black” Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping

0
TipTip
Save
Document
Download
Flag content

Abstract

Modification of rutile titanium dioxide (TiO2) for hydrogen generation and water cleaning is a grand challenge due to the chemical inertness of rutile, while such inertness is a desired merit for its stability in photoelectrochemical applications. Herein, we report an innovative two-step method to prepare a core-shell nanostructured S-doped rutile TiO2 (R'-TiO2-S). This modified black rutile TiO2 sample exhibits remarkably enhanced absorption in visible and near-infrared regions and efficient charge separation and transport. As a result, the unique sulfide surface (TiO(2-x):S) boosts the photocatalytic water cleaning and water splitting with a steady solar hydrogen production rate of 0.258 mmol h(-1) g(-1). The black titania is also an excellent photoelectrochemical electrode exhibiting a high solar-to-hydrogen conversion efficiency of 1.67%. The sulfided surface shell is proved to be an effective strategy for enhancing solar light absorption and photoelectric conversion.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.