Designing short-wavelength nonlinear-optical (NLO) crystals is of vital importance for laser applications. Here, the combination of alkaline-earth metals, d0 transition metals, and F atom has generated two new and isostructural fluorides, CaBaZr2F12 (CBZF) and CaBaHf2F12 (CBHF), which adopt centrosymmetric space group I4/mmm. Taking CBZF and CBHF as the parents, two new fluorides, K2BaZr2F12 (KBZF) and K2BaHf2F12 (KBHF), with an Imm2 polar structure were obtained via a heterovalent cation substitution strategy. All four compounds feature ZrF8-dodecahedra-built {[Zr2F12]4–}∞ chains and show short ultraviolet cutoff edges (<200 nm). KBZF and KBHF show phase-matchable behavior with moderate second-harmonic-generation responses [0.6 and 0.35 × KH2PO4 (KDP)] under 1064 nm laser radiation. This work enriches fluorides as promising short-wavelength NLO materials.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.