Significance Patients suffering from ischemic strokes have limited therapeutic options and are often left with considerable disabilities. To promote neurological recovery, angiogenesis has been proposed as a promising therapeutic target. So far, experimental efforts to enhance vessel growth have almost exclusively focused on vascular growth factor supplementation; this approach has been shown not to be clinically viable due to hemorrhagic risks. Here, we pursued an alternative approach by targeting the guidance molecule Nogo-A, which has been recently shown to inhibit developmental central nervous system angiogenesis. Blockage of the Nogo-A pathway results in restoration of a mature vascular bed within the periinfarct zone. Moreover, we observe enhanced recovery-associated tissue responses and regain of motor functions that strongly correlate with vascular growth.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.