The coupled N = 1 Yang-Mills plus supergravity theory in ten dimensions can be made anomaly-free for SO(32) or E8 × E8. Only the case of SO(32) is known to correspond to a superstring theory, which is probably necessary for a fully consistent quantum theory. Anomaly-free chiral theories in lower dimensions can be obtained by considering nontrivial compactifications (involving nonzero background gauge fields) of the ten-dimensional theory that satisfy a topological consistency condition. This paper considers the compactification of four dimensions on the manifold K3 without requiring that the equations of motion be satisfied. This leads to a large number of anomaly-free chiral supersymmetric six-dimensional theories, corresponding to various ways of embedding U(1) factors in SO(32) or E8 × E8.
Support the authors with ResearchCoin