The nitrite anion is reduced to nitric oxide (NO • ) as oxygen tension decreases. Whereas this pathway modulates hypoxic NO • signaling and mitochondrial respiration and limits myocardial infarction in mammalian species, the pathways to nitrite bioactivation remain uncertain. Studies suggest that hemoglobin and myoglobin may subserve a fundamental physiological function as hypoxia dependent nitrite reductases. Using myoglobin wild-type ( +/+ ) and knockout ( −/− ) mice, we here test the central role of myoglobin as a functional nitrite reductase that regulates hypoxic NO • generation, controls cellular respiration, and therefore confirms a cytoprotective response to cardiac ischemia-reperfusion (I/R) injury. We find that myoglobin is responsible for nitrite-dependent NO • generation and cardiomyocyte protein iron-nitrosylation. Nitrite reduction to NO • by myoglobin dynamically inhibits cellular respiration and limits reactive oxygen species generation and mitochondrial enzyme oxidative inactivation after I/R injury. In isolated myoglobin +/+ but not in myoglobin −/− hearts, nitrite treatment resulted in an improved recovery of postischemic left ventricular developed pressure of 29%. In vivo administration of nitrite reduced myocardial infarction by 61% in myoglobin +/+ mice, whereas in myoglobin −/− mice nitrite had no protective effects. These data support an emerging paradigm that myoglobin and the heme globin family subserve a critical function as an intrinsic nitrite reductase that regulates responses to cellular hypoxia and reoxygenation. myoglobin knockout mice
Support the authors with ResearchCoin