Germanium (Ge) is demonstrated to be prospective as a lithium‐ion battery anode material, yet the cycling stability is undermined by substantial volume fluctuations, restricting its viability for practical applications. Here, we present a facile Zn‐based metal−organic framework (MOF) engaged route to produce Ge nanoparticles in situ encapsulated in nitrogen‐doped mesoporous carbon (denoted as Ge@N‐C) as an anode material. This method uses a zinc‐triazolate MOF (MET‐6) and commercial GeO2 as the hybrid carbon and Ge precursors. After a heating treatment, the Ge@N‐C composite is readily obtained along with the simultaneous thermal decomposition of MET‐6 and the reduction of GeO2. Benefiting from the mesoporous structure and high electrical conductivity of N‐C, along with the strong interaction between Ge and N‐C, the obtained Ge@N‐C electrode exhibits a significant reversible charge capacity of 1012.8 mAh g‐1 after 150 cycles at 0.1 A g‐1, and excellent rate capability. Furthermore, a reversible charge capacity of 521.1 mAh g‐1 can be maintained at 5.0 A g‐1 after 1000 cycles.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.