The use of conductive frameworks as the host scaffold to obtain nanostructured sulfur cathodes is an efficient way to increase the sulfur utilization for redox reaction in Li‐S batteries with large discharge capacity and high energy density. However, due to dynamical interfaces driven by phase evolution between the conductive hosts and S‐containing guests during cycling, the cathode still faces poor stability. Herein, the use of O‐/N‐containing nanocarbon as the conductive host sheds a light on the role of the dynamic interface between the carbon host and S‐containing guest for a stable Li‐S cell. The outstanding reversibility and stability of N‐doped C/S cathodes are attributed to the favorable guest‐host interaction at the electron‐modified interface, manifesting as (i) a chemical gradient to adsorb polar polysulfides and (ii) ameliorative deposition and recharging of Li 2 S on the region of electron‐rich pyridinic N and a graphene domain surrounding quaternary N. Highly reversible, efficient and stable Li storage properties such as mitigated polarization and charge barrier, high capacity of 1370 and 964 mAh g −1 at 0.1 and 1.0 C, respectively, and 70% of capacity retention after 200 cycles are achieved. Mechanistic insight into the capacity fading inspires the rational design on electrodes for high‐performance electrochemical systems.
Support the authors with ResearchCoin