Abstract Manipulating charge generation in a broad spectral region has proved to be crucial for nonfullerene‐electron‐acceptor‐based organic solar cells (OSCs). 16.64% high efficiency binary OSCs are achieved through the use of a novel electron acceptor AQx‐2 with quinoxaline‐containing fused core and PBDB‐TF as donor. The significant increase in photovoltaic performance of AQx‐2 based devices is obtained merely by a subtle tailoring in molecular structure of its analogue AQx‐1. Combining the detailed morphology and transient absorption spectroscopy analyses, a good structure–morphology–property relationship is established. The stronger π–π interaction results in efficient electron hopping and balanced electron and hole mobilities attributed to good charge transport. Moreover, the reduced phase separation morphology of AQx‐2‐based bulk heterojunction blend boosts hole transfer and suppresses geminate recombination. Such success in molecule design and precise morphology optimization may lead to next‐generation high‐performance OSCs.
Support the authors with ResearchCoin