Significance Chimeric antigen receptor T (CAR-T) cell therapy has produced promising results in clinical trials but has been challenged by the inability to control engineered cells once infused into the patient. Here we present a generalizable method of controlling CAR-T cells using peptide-engrafted antibody-based molecular switches that act as a bridge between the target cell and CAR-T cell. We show that switches specific for CD19 govern the activity, tissue-homing, cytokine release, and phenotype of switchable CAR-T cells in a dose-titratable manner using xenograft mouse models of B-cell leukemia. We expect that this method of tuning CAR-T cell responses will provide improved safety and versatility of CAR–T-cell therapy in the clinic.
Support the authors with ResearchCoin