We investigate a magnetically coupled nonlinear piezoelectric energy harvester by altering the angular orientation of its external magnets for enhanced broadband frequency response. Electromechanical equations describing the nonlinear dynamic behavior include an experimentally identified polynomial for the transverse magnetic force that depends on magnet angle. Up- and down-sweep harmonic excitation tests are performed at constant acceleration over the range of 0–25 Hz. Very good agreement is observed between the numerical and experimental open-circuit voltage output frequency response curves. The nonlinear energy harvester proposed in this work can cover the broad low-frequency range of 4–22 Hz by changing the magnet orientation.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.