Identifying the properties of gene networks that influence their evolution is a fundamental research goal. However, modes of evolution cannot be inferred solely from the distribution of natural variation, because selection interacts with demography and mutation rates to shape polymorphism and divergence. We estimated the effects of naturally occurring mutations on gene expression while minimizing the effect of natural selection. We demonstrate that sensitivity of gene expression to mutations increases with both increasing trans-mutational target size and the presence of a TATA box. Genes with greater sensitivity to mutations are also more sensitive to systematic environmental perturbations and stochastic noise. These results provide a mechanistic basis for gene expression evolvability that can serve as a foundation for realistic models of regulatory evolution.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.
Connect with your self-custody wallet
Connect with your Coinbase account