We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require templates with an active galactic nucleus (AGN) contribution. High accuracy in the derived photometric redshifts was accomplished as the result of (1) photometry in up to 30 bands with high-significance detections, (2) a new set of SED templates, including 18 hybrids covering the far-UV to mid-infrared, which have been constructed by the combination of AGNs and nonactive galaxies templates, and (3) multiepoch observations that have been used to correct for variability (most important for type 1 AGNs). The reliability of the photometric redshifts is evaluated using the subsample of 442 sources with measured spectroscopic redshifts. We achieved an accuracy of for i*AB < 22.5 ( for i*AB < 24.5). The high accuracies were accomplished for both type 2 (where the SED is often dominated by the host galaxy) and type 1 AGNs and QSOs out to z = 4.5. The number of outliers is a large improvement over previous photometric redshift estimates for X-ray-selected sources (4.0% and 4.8% outliers for i*AB < 22.5 and i*AB < 24.5, respectively). We show that the intermediate band photometry is vital to achieving accurate photometric redshifts for AGNs, whereas the broad SED coverage provided by mid-infrared (Spitzer/IRAC) bands is important to reduce the number of outliers for normal galaxies.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.