Paper
Document
Download
Flag content
0

Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne, Australia

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Variations in urban surface characteristics are known to alter the local climate through modification of land surface processes that influence the surface energy balance and boundary layer and lead to distinct urban climates. In Melbourne, Australia, urban densities are planned to increase under a new strategic urban plan. Using the eddy covariance technique, this study aimed to determine the impact of increasing housing density on the surface energy balance and to investigate the relationship to Melbourne’s local climate. Across four sites of increasing housing density and varying land surface characteristics (three urban and one rural), it was found that the partitioning of available energy was similar at all three urban sites. Bowen ratios were consistently greater than 1 throughout the year at the urban sites (often as high as 5) and were higher than the rural site (less than 1) because of reduced evapotranspiration. The greatest difference among sites was seen in urban heat storage, which was influenced by urban canopy complexity, albedo, and thermal admittance. Resulting daily surface temperatures were therefore different among the urban sites, yet differences in above-canopy daytime air temperatures were small because of similar energy partitioning and efficient mixing. However, greater nocturnal temperatures were observed with increasing density as a result of variations in heat storage release that are in part due to urban canyon morphology. Knowledge of the surface energy balance is imperative for urban planning schemes because there is a possibility for manipulation of land surface characteristics for improved urban climates.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.