Development of cell-targeting vectors is an important focus for gene therapy. While some ligands can be genetically inserted into virus capsid proteins for cell targeting, for many ligands, this approach can disrupt either ligand function or vector function. To address this problem for adenovirus type 5 vectors, the fiber capsid protein was genetically fused to a biotin acceptor peptide (BAP). Adenovirus particles bearing this BAP were metabolically biotinylated during vector production by the endogenous biotin ligase in 293 cells to produce covalently biotinylated virions. The resulting biotinylated vector could be retargeted to new receptors by conjugation to biotinylated antibodies using tetrameric avidin (K(d) = 10(-15) M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (K(d) = 10(-7) M). Finally, this vector was used as a ligand screening platform for dendritic cells in which a variety of structurally diverse protein, carbohydrate, and nucleic acid ligands were easily added to the vector using the biotin-avidin interaction. This work demonstrates the utility of metabolically biotinylated viruses for ligand screening, vector targeting, and virus purification applications.