An etching-intralayered Ostwald ripening process is proposed, which leads to the formation of a β-Ni(OH)2 ultrathin nanomesh with abundant and uniformly distributed nanopores of 3–4 nm. The nanomesh catalyst exhibits outstanding oxygen evolution reaction performance, with high catalytic current density and superior long-term stability, making this Earth-abundant nanomesh catalyst a promising candidate for commercial water splitting. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Support the authors with ResearchCoin