Paper
Document
Submit new version
Download
Flag content
0

Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance

0
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

Our aim was to study the potential mechanisms responsible for the improvement in glucose control in Type 2 diabetes (T2D) within days after Roux-en-Y gastric bypass (RYGB). Thirteen obese subjects with T2D and twelve matched subjects with normal glucose tolerance (NGT) were examined during a liquid meal before (Pre), 1 wk, 3 mo, and 1 yr after RYGB. Glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), glucose-dependent-insulinotropic polypeptide (GIP), and glucagon concentrations were measured. Insulin resistance (HOMA-IR), β-cell glucose sensitivity (β-GS), and disposition index (D(β-GS): β-GS × 1/HOMA-IR) were calculated. Within the first week after RYGB, fasting glucose [T2D Pre: 8.8 ± 2.3, 1 wk: 7.0 ± 1.2 (P < 0.001)], and insulin concentrations decreased significantly in both groups. At 129 min, glucose concentrations decreased in T2D [Pre: 11.4 ± 3, 1 wk: 8.2 ± 2 (P = 0.003)] but not in NGT. HOMA-IR decreased by 50% in both groups. β-GS increased in T2D [Pre: 1.03 ± 0.49, 1 wk: 1.70 ± 1.2, (P = 0.012)] but did not change in NGT. The increase in DI(β-GS) was 3-fold in T2D and 1.5-fold in NGT. After RYGB, glucagon secretion was increased in response to the meal. GIP secretion was unchanged, while GLP-1 secretion increased more than 10-fold in both groups. The changes induced by RYGB were sustained or further enhanced 3 mo and 1 yr after surgery. Improvement in glycemic control in T2D after RYGB occurs within days after surgery and is associated with increased insulin sensitivity and improved β-cell function, the latter of which may be explained by dramatic increases in GLP-1 secretion.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.