Paper
Document
Submit new version
Download
Flag content
3 Tipped
$0.00
11

Assessment of Brain Injury Using Portable, Low-Field Magnetic Resonance Imaging at the Bedside of Critically Ill Patients

Authors
Kevin N. Sheth,Mercy H. Mazurek
Matthew M. Yuen,Bradley A. Cahn,Jill T. Shah,Adrienne Ward,Jennifer A. Kim,Emily J. Gilmore,Guido J. Falcone,Nils Petersen,Kevin T. Gobeske,Firas Kaddouh,David Y. Hwang,Joseph Schindler,Lauren Sansing,Charles Matouk,Jonathan Rothberg,Gordon Sze,Jonathan Siner,Matthew S. Rosen,Serena Spudich,W. Taylor Kimberly,Kevin Sheth,Mercy Mazurek,Matthew Yuen,Bradley Cahn,Jill Shah,Jennifer Kim,Emily Gilmore,Guido Falcone,Kevin Gobeske,David Hwang,Matthew Rosen
+31 authors
,W. Kimberly
Published
Jan 1, 2021
Show more
Save
TipTip
Document
Submit new version
Download
Flag content
11
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

Neuroimaging is a key step in the clinical evaluation of brain injury. Conventional magnetic resonance imaging (MRI) systems operate at high-strength magnetic fields (1.5-3 T) that require strict, access-controlled environments. Limited access to timely neuroimaging remains a key structural barrier to effectively monitor the occurrence and progression of neurological injury in intensive care settings. Recent advances in low-field MRI technology have allowed for the acquisition of clinically meaningful imaging outside of radiology suites and in the presence of ferromagnetic materials at the bedside.To perform an assessment of brain injury in critically ill patients in intensive care unit settings, using a portable, low-field MRI device at the bedside.This was a prospective, single-center cohort study of 50 patients admitted to the neuroscience or coronavirus disease 2019 (COVID-19) intensive care units at Yale New Haven Hospital in New Haven, Connecticut, from October 30, 2019, to May 20, 2020. Patients were eligible if they presented with neurological injury or alteration, no contraindications for conventional MRI, and a body habitus not exceeding the scanner's 30-cm vertical opening. Diagnosis of COVID-19 was determined by positive severe acute respiratory syndrome coronavirus 2 polymerase chain reaction nasopharyngeal swab result.Portable MRI in an intensive care unit room.Demographic, clinical, radiological, and treatment data were collected and analyzed. Brain imaging findings are described.Point-of-care MRI examinations were performed on 50 patients (16 women [32%]; mean [SD] age, 59 [12] years [range, 20-89 years]). Patients presented with ischemic stroke (n = 9), hemorrhagic stroke (n = 12), subarachnoid hemorrhage (n = 2), traumatic brain injury (n = 3), brain tumor (n = 4), and COVID-19 with altered mental status (n = 20). Examinations were acquired at a median of 5 (range, 0-37) days after intensive care unit admission. Diagnostic-grade T1-weighted, T2-weighted, T2 fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences were obtained for 37, 48, 45, and 32 patients, respectively. Neuroimaging findings were detected in 29 of 30 patients who did not have COVID-19 (97%), and 8 of 20 patients with COVID-19 (40%) demonstrated abnormalities. There were no adverse events or complications during deployment of the portable MRI or scanning in an intensive care unit room.This single-center series of patients with critical illness in an intensive care setting demonstrated the feasibility of low-field, portable MRI. These findings demonstrate the potential role of portable MRI to obtain neuroimaging in complex clinical care settings.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or