Safety issues rising from the use of conventional liquid electrolytes in lithium-based batteries are currently limiting their application to electric vehicles and large-scale energy storage from renewable sources. Polymeric electrolytes represent a solution to this problem due to their intrinsic safety. Ideally, polymer electrolytes should display both high lithium transference number (tLi+) and ionic conductivity. Practically, strategies for increasing tLi+ often result in low ionic conductivity and vice versa. Herein, networked polymer electrolytes simultaneously displaying tLi+ approaching unity and high ionic conductivity (σ ≈ 10–4 S cm–1 at 25 °C) are presented. Lithium cells operating at room temperature demonstrate the promising prospect of these materials.
Support the authors with ResearchCoin