d Notch signaling is a conserved cell fate regulator during development and postnatal tissue regeneration.Using skeletal muscle satellite cells as a model and through myogenic cell lineage-specific NICD OE (overexpression of constitutively activated Notch 1 intracellular domain), here we investigate how Notch signaling regulates the cell fate choice of muscle stem cells.We show that in addition to inhibiting MyoD and myogenic differentiation, NICD OE upregulates Pax7 and promotes the self-renewal of satellite cell-derived primary myoblasts in culture.Using MyoD ؊/؊ myoblasts, we further show that NICD OE upregulates Pax7 independently of MyoD inhibition.In striking contrast to previous observations, NICD OE also inhibits S-phase entry and Ki67 expression and thus reduces the proliferation of primary myoblasts.Overexpression of canonical Notch target genes mimics the inhibitory effects of NICD OE on MyoD and Ki67 but not the stimulatory effect on Pax7.Instead, NICD regulates Pax7 through interaction with RBP-J, which binds to two consensus sites upstream of the Pax7 gene.Importantly, satellite cell-specific NICD OE results in impaired regeneration of skeletal muscles along with increased Pax7 ؉ mononuclear cells.Our results establish a role of Notch signaling in actively promoting the self-renewal of muscle stem cells through direct regulation of Pax7.
Support the authors with ResearchCoin