Biomarker detection plays a pivotal role in biomedical research. Integrating omics studies from multiple cohorts can enhance statistical power, accuracy, and robustness of the detection results. However, existing methods for horizontally combining omics studies are mostly designed for two-class scenarios (e.g. cases versus controls) and are not directly applicable for studies with multi-class design (e.g. samples from multiple disease subtypes, treatments, tissues, or cell types).
Support the authors with ResearchCoin
Support the authors with ResearchCoin