Aqueous zinc-ion batteries (AZIBs) are increasingly being acknowledged as a promising candidate to safely power large-scale energy storage systems and portable devices. However, the development of effective separator materials remains a significant challenge due to issues such as harmful dendrite growth on zinc (Zn) anodes and parasitic side reactions in aqueous electrolytes. To address this challenge, we synthesize a manganese-coordinated cellulose nanofibril (Mn-CNF)-based separator for high-performance AZIBs. This separator affords enhanced ion transport channel, a large number of hydroxyl groups, and exceptional mechanical properties, with a tensile strength of 2.8 MPa and superior ionic conductivity of 5.14 mS·cm−1. These attributes collectively enhance Zn-ion transport, minimize nucleation overpotential for Zn, and accelerate the Zn deposition kinetics, thus significantly outperforming the untreated CNF separators. Consequently, the Zn||MnO2 battery with the Mn-CNF separator shows a marked improvement in the galvanostatic rate performance and cycling stability by effectively accelerating and optimizing Zn-ion transport. This study offers valuable insights into the development of efficient and reliable separators for advanced electrochemical energy storage technologies.
Support the authors with ResearchCoin
Support the authors with ResearchCoin