Sintering is the preproduction process of ironmaking, whose products are the basis of ironmaking. How to improve the operating performance of the iron ore sintering process has always been a problem that operators are committed to solve. An operating performance improvement method based on prediction and grade assessment is presented in this article. First, considering the data distribution characteristics of the process, a performance index prediction model based on the Gaussian process regression is built, in which the mutual information analysis method is used to select the inputs of the performance index prediction model. Then, the operating performance grade is assessed by a threshold division method. Next, the operating performance grade guides the control of the burn-through point to improve the operating performance. Finally, experimental verification is performed based on the actual running data. The results show that the proposed method has high prediction accuracy, and it is also significant in improving the operating performance. Therefore, this approach provides an effective solution to predict and improve operating performance.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.