Lead halide perovskite nanocrystals (NCs) have attracted much attention as materials for light-emitting diodes and quantum light sources. A deep understanding of exciton–phonon couplings is essential for obtaining a narrow emission line, weak phonon-sideband photoluminescence (PL), and a long exciton coherence time, which are especially useful for high-color-purity quantum-light-source applications. Here, we report the PL spectra of single CsPbBr3 NCs at 5.5 K as a function of the applied electric field. The exciton peak energy shows an asymmetric parabolic shift for positive and negative biases, implying the presence of a spontaneously generated internal electric field in the NCs when no field is applied. Both the internal electric field and exciton–phonon couplings become larger in smaller NCs, and they have a positive correlation with each other. Our findings show that the exciton–phonon couplings can be manipulated with an electric field, which dominates the PL properties of perovskite NCs.
Support the authors with ResearchCoin