Traditional methods for staying warm have a negative impact on outdoor work and result in substantial resource consumption. In contrast, photothermal conversion fiber fabrics utilize solar energy to regulate the temperature, providing a sustainable solution for warmth. Here, porous poly(tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) (THV)/zirconium carbide (ZrC) fiber fabrics were fabricated via a one-step electrospinning process based on water-vapor-induced phase separation using a binary solvent system of ethyl acetate and acetone. At a room temperature of approximately 5 °C, the THV/ZrC fiber fabric with a ZrC content of 0.5% can rapidly heat up to 52.3 °C within 30 s under 80 mW/cm2 illumination. The excellent photothermal properties combined with superhydrophobicity endowed it with significant deicing capabilities. More importantly, the multifunctional properties, including self-cleaning, waterproofing, breathability, flame retardancy, acid and alkali resistance, and ultraviolet (UV) protection, made the fiber fabric safe and comfortable to wear. Additionally, its white appearance enhances its aesthetic appeal.
Support the authors with ResearchCoin