Paper
Document
Download
Flag content
0

From Hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to Anhydrous Ni2(OH)2(C8H4O4): Impact of Structural Transformations on Magnetic Properties

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

Dehydration of the hybrid compound [Ni3(OH)2(tp)2(H2O)4] (1) upon heating led to the sequential removal of coordinated water molecules to give [Ni3(OH)2(tp)2(H2O)2] (2) at T1 = 433 K and thereafter anhydrous [Ni2(OH)2(tp)] (3) at T2 = 483 K. These two successive structural transformations were thoroughly characterized by powder X-ray diffraction assisted by density functional theory calculations. The crystal structures of the two new compounds 2 and 3 were determined. It was shown that at T1 (433 K) the infinite nickel oxide chains built of the repeating structural unit [Ni3(μ3-OH)2](4+) in 1 collapse and lead to infinite porous layers, forming compound 2. The second transformation at T2 (483 K) gave the expected anhydrous compound 3, which is isostructural with Co2(OH)2(tp). These irreversible transitions directly affect the magnetic behavior of each phase. Hence, 1 was found to be antiferromagnetic at TN = 4.11 K, with metamagnetic behavior with a threshold field Hc of ca. 0.6 T. Compound 2 exhibits canted antiferromagnetism below TN = 3.19 K, and 3 is ferromagnetic below TC = 4.5 K.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or