The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of ${K}_{S}^{0}$, $\ensuremath{\omega}$, ${\ensuremath{\eta}}^{\ensuremath{'}}$, and $\ensuremath{\phi}$ mesons in $p+p$ collisions at $\sqrt{s}=200\text{ }\text{ }\mathrm{GeV}$. Measurements of $\ensuremath{\omega}$ and $\ensuremath{\phi}$ production in different decay channels give consistent results. New results for the $\ensuremath{\omega}$ are in agreement with previously published data and extend the measured ${p}_{T}$ coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, $n$ and $T$, determining the high-${p}_{T}$ and characterizing the low-${p}_{T}$ regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter $T$ extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.