Significance Current tools for bacterial genome engineering suffer from major limitations. They have been optimized for a few laboratory model strains, lead to the accumulation of numerous undesired, off-target modifications, and demand extensive modification of the host genome prior to large-scale editing. Herein, we address these problems and present a simple, all-in-one solution. By utilizing a highly conserved mutant allele of the bacterial mismatch-repair system, we were able to gain unprecedented precision in the control over the generation of desired modifications in multiple bacterial species. These results have broad implications with regards to both biotechnological and clinical applications.
Support the authors with ResearchCoin