Paper
Document
Download
Flag content
0

Solid‐State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide‐Based All‐Solid‐State Lithium Metal Batteries

0
TipTip
Save
Document
Download
Flag content

Abstract

Abstract All‐solid‐state lithium metal batteries (ASSLMBs) have attracted significant attention due to their superior safety and high energy density. However, little success has been made in adopting Li metal anodes in sulfide electrolyte (SE)‐based ASSLMBs. The main challenges are the remarkable interfacial reactions and Li dendrite formation between Li metal and SEs. In this work, a solid‐state plastic crystal electrolyte (PCE) is engineered as an interlayer in SE‐based ASSLMBs. It is demonstrated that the PCE interlayer can prevent the interfacial reactions and lithium dendrite formation between SEs and Li metal. As a result, ASSLMBs with LiFePO 4 exhibit a high initial capacity of 148 mAh g −1 at 0.1 C and 131 mAh g −1 at 0.5 C (1 C = 170 mA g −1 ), which remains at 122 mAh g −1 after 120 cycles at 0.5 C. All‐solid‐state Li‐S batteries based on the polyacrylonitrile‐sulfur composite are also demonstrated, showing an initial capacity of 1682 mAh g −1 . The second discharge capacity of 890 mAh g −1 keeps at 775 mAh g −1 after 100 cycles. This work provides a new avenue to address the interfacial challenges between Li metal and SEs, enabling the successful adoption of Li metal in SE‐based ASSLMBs with high energy density.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.