In elderly people particularly in postmenopausal women, inadequate bone formation by osteoblasts originating from bone marrow mesenchymal stem cells (BMSCs) for compensation of bone resorption by osteoclasts is a major reason for osteoporosis. Enhancing osteoblastic differentiation of BMSCs is a feasible therapeutic strategy for osteoporosis. Here, bone marrow stromal cell (ST)-derived exosomes (STExos) are found to remarkably enhance osteoblastic differentiation of BMSCs in vitro. However, intravenous injection of STExos is inefficient in ameliorating osteoporotic phenotypes in an ovariectomy (OVX)-induced postmenopausal osteoporosis mouse model, which may be because STExos are predominantly accumulated in the liver and lungs, but not in bone. Hereby, the STExo surface is conjugated with a BMSC-specific aptamer, which delivers STExos into BMSCs within bone marrow. Intravenous injection of the STExo-Aptamer complex enhances bone mass in OVX mice and accelerates bone healing in a femur fracture mouse model. These results demonstrate the efficiency of BMSC-specific aptamer-functionalized STExos in targeting bone to promote bone regeneration, providing a novel promising approach for the treatment of osteoporosis and fracture.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.