Rationale: Endothelial cell–specific molecule 1 (Esm1) is a secreted protein thought to play a role in angiogenesis and inflammation. However, there is currently no direct in vivo evidence supporting a function of Esm1 in either of these processes. Objective: To determine the role of Esm1 in vivo and the underlying molecular mechanisms. Methods and Results: We generated and analyzed Esm1 knockout ( Esm1 KO ) mice to study its role in angiogenesis and inflammation. Esm1 expression is induced by the vascular endothelial growth factor A (VEGF-A) in endothelial tip cells of the mouse retina. Esm1 KO mice showed delayed vascular outgrowth and reduced filopodia extension, which are both VEGF-A–dependent processes. Impairment of Esm1 function led to a decrease in phosphorylated Erk1/2 (extracellular-signal regulated kinases 1/2) in sprouting vessels. We also found that Esm1 KO mice displayed a 40% decrease in leukocyte transmigration. Moreover, VEGF-induced vascular permeability was decreased by 30% in Esm1 KO mice and specifically on stimulation with VEGF-A 165 but not VEGF-A 121 . Accordingly, cerebral edema attributable to ischemic stroke–induced vascular permeability was reduced by 50% in the absence of Esm1. Mechanistically, we show that Esm1 binds directly to fibronectin and thereby displaces fibronectin-bound VEGF-A 165 leading to increased bioavailability of VEGF-A 165 and subsequently enhanced levels of VEGF-A signaling. Conclusions: Esm1 is simultaneously a target and modulator of VEGF signaling in endothelial cells, playing a role in angiogenesis, inflammation, and vascular permeability, which might be of potential interest for therapeutic applications.
Support the authors with ResearchCoin