In this paper, the uncertainty and disturbance estimator (UDE)-based robust control is applied to the control of a class of nonaffine nonlinear systems. This class of systems is very general and covers a large range of nonlinear systems. However, the control of such systems is very challenging because the input variables are not expressed in an affine form, which leads to the failure of using feedback linearization. The proposed UDE-based control method avoids the inverse operator construction, which might result in the control singularity problem. Moreover, the general assumption on the uncertainty and disturbance term is relaxed, and only its bandwidth information is required for the control design. The asymptotic stability of the closed-loop system is established. The proposed approach is easy to be implemented and tuned while bringing very good robust performance. The important features and performance of the proposed approach are demonstrated through both simulation studies and experimental validation on a servo system with nonaffine uncertainties.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.