Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. The "Terminator" in the science fiction film is a cybernetic organism with living tissue over a metal endoskeleton, which inspired us to develop natural-killer-cell-mimic nanorobots with aggregation-induced emission (AIE) characteristics (NK@AIEdots) by coating a natural kill cell membrane on an AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owing to the AIE and soft-matter characteristics of PBPTV, as-prepared NK@AIEdots maintained a superior NIR-II brightness (quantum yield ∼7.9% in water) and good biocompatibility. Besides, they can serve as a tight junction (TJ) modulator to trigger an intracellular signaling cascade, causing TJ disruption and actin cytoskeleton reorganization to form an intercellular "green channel" to help them to cross the blood–brain barrier (BBB) silently. Furthermore, they can initiatively accumulate in glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these NK@AIEdots under the NIR light illumination. As far as we know, the quantum yield of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots showed great potential for BBB-crossing active delivery.