Perihematomal hypoperfusion may lead to ischemic damage during intraparenchymal cerebral hemorrhage (ICH), resulting in worse prognosis. We aimed to (1) investigate the relationship between serum biomarkers related to oxidative stress and vasoactive substances and the occurrence of hypoperfusion and ischemic perihematomal lesions in ICH and (2) evaluate their correlation with the volumetric evolution of the hematoma and perihematomal edema. We enrolled 28 patients affected by ICH. Blood samples were collected at three different time points from symptom onset: T0, T1, and T2 (admission, 12-24 h, and 48-72 h, respectively), to measure endothelin-1 (ET-1), nitrites/nitrates (NO), soluble nicotinamide adenine dinucleotide 2 (NOX2)-derived peptide (sNOX2-dp), and asymmetric dimethylarginine (ADMA). Patients underwent brain MRI with perfusion study at T1 and MRI without perfusion at T2. 12 patients had ischemic perihematomal lesions at T1. A higher sNOX2-dp concentration at T0 was observed in patients with ischemic perihematomal lesions compared to those without (
Support the authors with ResearchCoin