Abstract Relative to electron donors for bulk heterojunction organic solar cells (OSCs), electron acceptors that absorb strongly in the visible and even near‐infrared region are less well developed, which hinders the further development of OSCs. Fullerenes as traditional electron acceptors have relatively weak visible absorption and limited electronic tunability, which constrains the optical and electronic properties required of the donor. Here, high‐performance fullerene‐free OSCs based on a combination of a medium‐bandgap polymer donor (FTAZ) and a narrow‐bandgap nonfullerene acceptor (IDIC), which exhibit complementary absorption, matched energy levels, and blend with pure phases on the exciton diffusion length scale, are reported. The single‐junction OSCs based on the FTAZ:IDIC blend exhibit power conversion efficiencies up to 12.5% with a certified value of 12.14%. Transient absorption spectroscopy reveals that exciting either the donor or the acceptor component efficiently generates mobile charges, which do not suffer from recombination to triplet states. Balancing photocurrent generation between the donor and nonfullerene acceptor removes undesirable constraints on the donor imposed by fullerene derivatives, opening a new avenue toward even higher efficiency for OSCs.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.