Paper
Document
Download
Flag content
0

Red emitting fluorescent carbon nanoparticles to track spatio-temporal dynamics of endocytic pathways in model neuroblastoma neurons

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

One of the biggest challenges limiting the biological applications of fluorescent carbon-based nanoparticles is their capacity to emit in the red region of the spectrum and simultaneously maintaining the smaller size. These two parameters always go in inverse proportion, thus lagging their applications in biological imaging. Endocytic pathways play important roles in regulating major cellular functions such as cellular differentiation. The Spatio-temporal dynamics of endocytic pathways adopted by various ligands (including nanoparticles) over longer durations in cellular differentiation remain unstudied. Here we have used red-emitting fluorescent carbon nanoparticles to study the endocytic pathways in neuronal cells at different stages of differentiation. These small-sized, bright, red-emitting carbon nanoparticles (CNPs) can be internalized by live cells and imaged for extended periods, thus capturing the Spatio-temporal dynamics of endocytic pathways in model SH-SY5Y derived neuroblastoma neurons. We find that these nanoparticles are preferably taken up via clathrin-mediated endocytosis and follow the classical recycling pathways at all the stages of neuronal differentiation. These nanoparticles hold immense potential for their size, composition, surface and fluorescence tunability, thus maximizing their applications in spatio-temporally tracking multiple cellular pathways in cells and tissues simultaneously.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.