Abstract Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells. Toward addressing this, synthetic polymers designed to mimic host defense peptides are promising new candidates for combating fungal infections. This study investigates well‐defined multiblock terpolymers with specific arrangements of cationic, hydrophobic, and hydrophilic groups, as potential antifungal agents. The block sequence in these copolymers significantly impacts their minimum inhibition concentration (MIC) against Candida albicans and biocompatibility. Furthermore, compared to their statistical counterparts, these block polymers exhibit lower MIC values in certain instances. Notably, triblock terpolymers containing a central hydrophobic block present an enhanced antifungal efficacy and biocompatibility. These findings highlight the potential of block sequence‐controlled polymers as a versatile platform for developing customized and targeted antifungal therapies.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.