The operation of the next generation of gamma-ray observatories will lead to a great advance in dark matter searches. In this paper, we use the hidden sectors hypothesis within the so-called secluded models to calculate the capabilities of the Southern Wide-field Gamma-ray Observatory (SWGO) to detect gamma-ray signatures produced by dark matter particles concentrated in the Sun. We assume the dark matter particle annihilates into metastable mediators which decay into $γγ$, $e^+e^-$, $τ^+τ^-$, and $\bar{b}b$ outside the Sun. We found that the SWGO will be able to probe a spin-dependent cross-section of about $10^{-46}$ cm$^2$ for dark matter masses smaller than 5 TeV. This result shows an unprecedented sensitivity surpassing the current instruments by more than one order of magnitude.
Support the authors with ResearchCoin
Support the authors with ResearchCoin