Paper
Document
Download
Flag content
0

Identification of Functionally-Relevant Lentivirus Integration Sites in an Insertional Mutagenesis Cell Library

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality. This protocol introduces the Insertion-based Screen for functional Elements and Transcripts (InSET), a method for identifying lentivirus integration sites within a lentivirus-based insertional mutagenesis cell library. InSET facilitates the capture of genome-wide lentiviral integration sites, with next-generation sequencing used to detect and quantify flanking sequences. InSET's design enables the analysis of integration site abundance variations in phenotypic screens on a large scale, establishing it as a robust tool for forward genetics and for identifying functional genomic elements. A key benefit of InSET is its capacity to reveal previously unidentified genomic elements, including novel functional exons of both protein-coding and non-coding RNAs, independent of prior annotation. Overall, InSET holds significant value in studying the intricate complexity of the human genome and transcriptome, where many genomic elements await functional characterization.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.