GW
Guy Wolf
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(65% Open Access)
Cited by:
2,376
h-index:
21
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visualizing structure and transitions in high-dimensional biological data

Kevin Moon et al.Dec 1, 2019
The high-dimensional data created by high-throughput technologies require visualization tools that reveal data structure and patterns in an intuitive form. We present PHATE, a visualization method that captures both local and global nonlinear structure using an information-geometric distance between data points. We compare PHATE to other tools on a variety of artificial and biological datasets, and find that it consistently preserves a range of patterns in data, including continual progressions, branches and clusters, better than other tools. We define a manifold preservation metric, which we call denoised embedding manifold preservation (DEMaP), and show that PHATE produces lower-dimensional embeddings that are quantitatively better denoised as compared to existing visualization methods. An analysis of a newly generated single-cell RNA sequencing dataset on human germ-layer differentiation demonstrates how PHATE reveals unique biological insight into the main developmental branches, including identification of three previously undescribed subpopulations. We also show that PHATE is applicable to a wide variety of data types, including mass cytometry, single-cell RNA sequencing, Hi-C and gut microbiome data.
0
Paper
Citation723
0
Save
0

Exploring Single-Cell Data with Deep Multitasking Neural Networks

Matthew Amodio et al.Dec 19, 2017
Abstract Biomedical researchers are generating high-throughput, high-dimensional single-cell data at a staggering rate. As costs of data generation decrease, experimental design is moving towards measurement of many different single-cell samples in the same dataset. These samples can correspond to different patients, conditions, or treatments. While scalability of methods to datasets of these sizes is a challenge on its own, dealing with large-scale experimental design presents a whole new set of problems, including batch effects and sample comparison issues. Currently, there are no computational tools that can both handle large amounts of data in a scalable manner (many cells) and at the same time deal with many samples (many patients or conditions). Moreover, data analysis currently involves the use of different tools that each operate on their own data representation, not guaranteeing a synchronized analysis pipeline. For instance, data visualization methods can be disjoint and mismatched with the clustering method. For this purpose, we present SAUCIE, a deep neural network that leverages the high degree of parallelization and scalability offered by neural networks, as well as the deep representation of data that can be learned by them to perform many single-cell data analysis tasks, all on a unified representation. A well-known limitation of neural networks is their interpretability. Our key contribution here are newly formulated regularizations (penalties) that render features learned in hidden layers of the neural network interpretable. When large multi-patient datasets are fed into SAUCIE, the various hidden layers contain denoised and batch-corrected data, a low dimensional visualization, unsupervised clustering, as well as other information that can be used to explore the data. We show this capability by analyzing a newly generated 180-sample dataset consisting of T cells from dengue patients in India, measured with mass cytometry. We show that SAUCIE, for the first time, can batch correct and process this 11-million cell data to identify cluster-based signatures of acute dengue infection and create a patient manifold, stratifying immune response to dengue on the basis of single-cell measurements.
0
Citation12
0
Save
36

Multiscale PHATE Exploration of SARS-CoV-2 Data Reveals Multimodal Signatures of Disease

Manik Kuchroo et al.Nov 17, 2020
1 Summary The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from these complex datasets, we present an approach called Multiscale PHATE, which learns abstracted biological features from data that can be directly predictive of disease. Built on a continuous coarse graining process called diffusion condensation, Multiscale PHATE creates a tree of data granularities that can be cut at coarse levels for high level summarizations of data, as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Through our analysis of patient samples, we identify CD16 hi CD66b lo neutrophil and IFNγ + GranzymeB + Th17 cell responses enriched in patients who die. Further, we show that population groupings Multiscale PHATE discovers can be directly fed into a classifier to predict disease outcome. We also use Multiscale PHATE-derived features to construct two different manifolds of patients, one from abstracted flow cytometry features and another directly on patient clinical features, both associating immune subsets and clinical markers with outcome.
4

Neural networks with optimized single-neuron adaptation uncover biologically plausible regularization

Victor Geadah et al.May 1, 2022
Abstract Neurons in the brain have rich and adaptive input-output properties. Features such as heterogeneous f-I curves and spike frequency adaptation are known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single-neuron flexibility, and how network-level requirements may have shaped such cellular function. To answer this question, a multi-scaled approach is needed where the computations of single neurons and neural circuits must be considered as a complete system. In this work, we use artificial neural networks to systematically investigate single-neuron input-output adaptive mechanisms, optimized in an end-to-end fashion. Throughout the optimization process, each neuron has the liberty to modify its nonlinear activation function, parametrized to mimic f-I curves of biological neurons, and to learn adaptation strategies to modify activation functions in real-time during a task. We find that such networks show much-improved robustness to noise and changes in input statistics. Importantly, we find that this procedure recovers precise coding strategies found in biological neurons, such as gain scaling and fractional order differentiation/integration. Using tools from dynamical systems theory, we analyze the role of these emergent single-neuron properties and argue that neural diversity and adaptation play an active regularization role, enabling neural circuits to optimally propagate information across time.
26

Data-driven approaches for genetic characterization of SARS-CoV-2 lineages

Fatima Mostefai et al.Sep 29, 2021
Abstract The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced at an unprecedented scale, leading to a tremendous amount of viral genome sequencing data. To understand the evolution of this virus in humans, and to assist in tracing infection pathways and designing preventive strategies, we present a set of computational tools that span phylogenomics, population genetics and machine learning approaches. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic, using 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets, enabling real-time analyses. Furthermore, time series change of Tajima’s D provides a powerful metric of population expansion. Unsupervised learning techniques further highlight key steps in variant detection and facilitate the study of the role of this genomic variation in the context of SARS-CoV-2 infection, with Multiscale PHATE methodology identifying fine-scale structure in the SARS-CoV-2 genetic data that underlies the emergence of key lineages. The computational framework presented here is useful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of worldwide populations of humans and other organisms.
26
Citation3
0
Save
0

Simulating federated learning for steatosis detection using ultrasound images

Yue Qi et al.Jun 10, 2024
We aimed to implement four data partitioning strategies evaluated with four federated learning (FL) algorithms and investigate the impact of data distribution on FL model performance in detecting steatosis using B-mode US images. A private dataset (153 patients; 1530 images) and a public dataset (55 patient; 550 images) were included in this retrospective study. The datasets contained patients with metabolic dysfunction-associated fatty liver disease (MAFLD) with biopsy-proven steatosis grades and control individuals without steatosis. We employed four data partitioning strategies to simulate FL scenarios and we assessed four FL algorithms. We investigated the impact of class imbalance and the mismatch between the global and local data distributions on the learning outcome. Classification performance was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. AUCs were 0.93 (95% CI 0.92, 0.94) for source-based partitioning scenario with FedAvg, 0.90 (95% CI 0.89, 0.91) for a centralized model, and 0.83 (95% CI 0.81, 0.85) for a model trained in a single-center scenario. When data was perfectly balanced on the global level and each site had an identical data distribution, the model yielded an AUC of 0.90 (95% CI 0.88, 0.92). When each site contained data exclusively from one single class, irrespective of the global data distribution, the AUC fell in the range of 0.34-0.70. FL applied to B-mode US images provide performance comparable to a centralized model and higher than single-center scenario. Global data imbalance and local data heterogeneity influenced the learning outcome.
0

Embedding single-cell experimental conditions to reveal manifold structure of cancer drug perturbation effects

William Chen et al.Oct 29, 2018
Previously, the effect of a drug on a cell population was measured based on simple metrics such as cell viability. However, as single-cell technologies are becoming more advanced, drug screen experiments can now be conducted with more complex readouts such as gene expression profiles of individual cells. The increasing complexity of measurements from these multi-sample experiments calls for more sophisticated analytical approaches than are currently available. We developed a novel method called PhEMD (Phenotypic Earth Mover's Distance) and show that it can be used to embed the space of drug perturbations on the basis of the drugs' effects on cell populations. When testing PhEMD on a newly-generated, 300-sample CyTOF kinase inhibition screen experiment, we find that the state space of the perturbation conditions is surprisingly low-dimensional and that the network of drugs demonstrates manifold structure. We show that because of the fairly simple manifold geometry of the 300 samples, we can accurately capture the full range of drug effects using a dictionary of only 30 experimental conditions. We also show that new drugs can be added to our PhEMD embedding using similarities inferred from other characterizations of drugs using a technique called Nystrom extension. Our findings suggest that large-scale drug screens can be conducted by measuring only a small fraction of the drugs using the most expensive high-throughput single-cell technologies--the effects of other drugs may be inferred by mapping and extending the perturbation space. We additionally show that PhEMD can be useful for analyzing other types of single-cell samples, such as patient tumor biopsies, by mapping the patient state space in a similar way as the drug state space. We demonstrate that PhEMD is scalable, compatible with leading batch effect correction techniques, and generalizable to multiple experimental designs. Altogether, our analyses suggest that PhEMD may facilitate drug discovery efforts and help uncover the network geometry of a collection of single-cell samples.
Load More