EB
Erik Bergstrom
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
University of California, San Diego, La Jolla Bioengineering Institute, Middle East Technical University
+ 5 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
180
h-index:
31
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Mechanisms of APOBEC3 mutagenesis in human cancer cells

Mia Petljak et al.Jul 21, 2022
+9
K
A
M
The APOBEC3 family of cytosine deaminases has been implicated in some of the most prevalent mutational signatures in cancer1-3. However, a causal link between endogenous APOBEC3 enzymes and mutational signatures in human cancer genomes has not been established, leaving the mechanisms of APOBEC3 mutagenesis poorly understood. Here, to investigate the mechanisms of APOBEC3 mutagenesis, we deleted implicated genes from human cancer cell lines that naturally generate APOBEC3-associated mutational signatures over time4. Analysis of non-clustered and clustered signatures across whole-genome sequences from 251 breast, bladder and lymphoma cancer cell line clones revealed that APOBEC3A deletion diminished APOBEC3-associated mutational signatures. Deletion of both APOBEC3A and APOBEC3B further decreased APOBEC3 mutation burdens, without eliminating them. Deletion of APOBEC3B increased APOBEC3A protein levels, activity and APOBEC3A-mediated mutagenesis in some cell lines. The uracil glycosylase UNG was required for APOBEC3-mediated transversions, whereas the loss of the translesion polymerase REV1 decreased overall mutation burdens. Together, these data represent direct evidence that endogenous APOBEC3 deaminases generate prevalent mutational signatures in human cancer cells. Our results identify APOBEC3A as the main driver of these mutations, indicate that APOBEC3B can restrain APOBEC3A-dependent mutagenesis while contributing its own smaller mutation burdens and dissect mechanisms that translate APOBEC3 activities into distinct mutational signatures.
1
Citation116
0
Save
20

Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor

S. Islam et al.Oct 11, 2023
+32
Y
M
S
SUMMARY Mutational signature analysis is commonly performed in genomic studies surveying cancer and normal somatic tissues. Here we present SigProfilerExtractor, an automated tool for accurate de novo extraction of mutational signatures for all types of somatic mutations. Benchmarking with a total of 34 distinct scenarios encompassing 2,500 simulated signatures operative in more than 60,000 unique synthetic genomes and 20,000 synthetic exomes demonstrates that SigProfilerExtractor outperforms thirteen other tools across all datasets with and without noise. For genome simulations with 5% noise, reflecting high-quality genomic datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true positive signatures while yielding more than 5-fold less false positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome sequenced and 19,184 whole-exome sequenced cancers reveals four previously missed mutational signatures. Two of the signatures are confirmed in independent cohorts with one of these signatures associating with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting mutational signatures, and several novel mutational signatures including a signature putatively attributed to direct tobacco smoking mutagenesis in bladder cancer and in normal bladder epithelium.
12

R-loop homeostasis and cancer mutagenesis promoted by the DNA cytosine deaminase APOBEC3B

John McCann et al.Oct 24, 2023
+16
E
A
J
Abstract The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here, APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in human cells and in vitro . Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts overexpressed genes and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B mediates R-loop homeostasis and contributes to R-loop mutagenesis in cancer. Highlights Unbiased proteomics link antiviral APOBEC3B to R-loop regulation Systematic alterations of APOBEC3B levels trigger corresponding changes in R-loops APOBEC3B binds R-loops in living cells and in vitro Bioinformatics analyses support an R-loop deamination and mutation model
12
Paper
Citation11
0
Save
8

Topography of mutational signatures in human cancer

Burçak Otlu et al.Oct 24, 2023
+4
I
M
B
SUMMARY The somatic mutations found in a cancer genome are imprinted by different mutational processes. Each process exhibits a characteristic mutational signature, which can be affected by the genome architecture. However, the interplay between mutational signatures and topographical genomic features has not been extensively explored. Here, we integrate mutations from 5,120 whole-genome sequenced tumours from 40 cancer types with 516 topographical features from ENCODE to evaluate the effect of nucleosome occupancy, histone modifications, CTCF binding, replication timing, and transcription/replication strand asymmetries on the cancer-specific accumulation of mutations from distinct mutagenic processes. Most mutational signatures are affected by topographical features with signatures of related aetiologies being similarly affected. Certain signatures exhibit periodic behaviours or cancer-type specific enrichments/depletions near topographical features, revealing further information about the processes that imprinted them. Our findings, disseminated via COSMIC, provide a comprehensive online resource for exploring the interactions between mutational signatures and topographical features across human cancer. GRAPHICAL ABSTRACT HIGHLIGHTS Comprehensive topography analysis of mutational signatures encompassing 82,890,857 somatic mutations in 5,120 whole-genome sequenced tumours integrated with 516 tissue-matched topographical features from the ENCODE project. The accumulation of somatic mutations from most mutational signatures is affected by nucleosome occupancy, histone modifications, CTCF binding sites, transcribed regions, or replication strand/timing. Mutational signatures with related aetiologies are consistently characterized by similar genome topographies across tissue types. Topography analysis allows both separating signatures from different aetiologies and understanding the genomic specificity of clustered somatic mutations. A comprehensive online resource, disseminate through the COSMIC signatures database, that allows researchers to explore the interactions between somatic mutational processes and genome architecture within and across cancer types.
8
Paper
Citation3
0
Save
0

Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides

Erik Bergstrom et al.Sep 6, 2024
+4
M
A
E
PURPOSE Cancers with homologous recombination deficiency (HRD) can benefit from platinum salts and poly(ADP-ribose) polymerase inhibitors. Standard diagnostic tests for detecting HRD require molecular profiling, which is not universally available. METHODS We trained DeepHRD, a deep learning platform for predicting HRD from hematoxylin and eosin (H&E)–stained histopathological slides, using primary breast (n = 1,008) and ovarian (n = 459) cancers from The Cancer Genome Atlas (TCGA). DeepHRD was compared with four standard HRD molecular tests using breast (n = 349) and ovarian (n = 141) cancers from multiple independent data sets, including platinum-treated clinical cohorts with RECIST progression-free survival (PFS), complete response (CR), and overall survival (OS) endpoints. RESULTS DeepHRD predicted HRD from held-out H&E-stained breast cancer slides in TCGA with an AUC of 0.81 (95% CI, 0.77 to 0.85). This performance was confirmed in two independent primary breast cancer cohorts (AUC, 0.76 [95% CI, 0.71 to 0.82]). In an external platinum-treated metastatic breast cancer cohort, samples predicted as HRD had higher complete CR (AUC, 0.76 [95% CI, 0.54 to 0.93]) with 3.7-fold increase in median PFS (14.4 v 3.9 months; P = .0019) and hazard ratio (HR) of 0.45 ( P = .0047). There were no significant differences in nonplatinum treatment outcome by predicted HRD status in three breast cancer cohorts, including CR (AUC, 0.39) and PFS (HR, 0.98, P = .95) in taxane-treated metastatic breast cancer. Through transfer learning to high-grade serous ovarian cancer, DeepHRD-predicted HRD samples had better OS after first-line (HR, 0.46; P = .030) and neoadjuvant (HR, 0.49; P = .015) platinum therapy in two cohorts. CONCLUSION DeepHRD can predict HRD in breast and ovarian cancers directly from routine H&E slides across multiple external cohorts, slide scanners, and tissue fixation variables. When compared with molecular testing, DeepHRD classified 1.8- to 3.1-fold more patients with HRD, which exhibited better OS in high-grade serous ovarian cancer and platinum-specific PFS in metastatic breast cancer.
0
Citation2
0
Save
1

Disentangling heterogeneity of Malignant Pleural Mesothelioma through deep integrative omics analyses

Lise Mangiante et al.Oct 24, 2023
+55
A
N
L
Summary Malignant Pleural Mesothelioma (MPM) is an aggressive cancer with rising incidence and challenging clinical management. Using the largest series of whole-genome sequencing data integrated with transcriptomic and epigenomic data using multi-omic factor analysis, we demonstrate that MPM heterogeneity arises from four sources of variation: tumor cell morphology, ploidy, adaptive immune response, and CpG island methylator phenotype. Previous genomic studies focused on describing only the tumor cell morphology factor, although we robustly find the three other sources in all publicly available cohorts. We prove how these sources of variation explain the biological functions performed by the cancer cells, and how genomic events shape MPM molecular profiles. We show how these new sources of variation help understand the heterogeneity of the clinical behavior of MPM and drug responses measured in cell lines. These findings unearth the interplay between MPM functional biology and its genomic history, and ultimately, inform classification, prognostication and treatment. Graphical abstract
1
Citation1
0
Save
0

Rare SNP in theHELBgene interferes with RPA interaction and cellular function of HELB

Bertha Osei et al.May 27, 2024
+7
C
B
B
HELB is a human helicase involved in initiation of DNA replication, the replication stress response, and regulation of double-strand DNA break repair. rs75770066 is a rare SNP in the HELB gene that affects age at natural menopause. rs75770066 results in a D506G substitution in an acidic patch within the 1A domain of the helicase that is known to interact with RPA. We found that this amino acid change dramatically impairs the cellular function of HELB. D506G-HELB exhibits impaired interaction with RPA, which likely results in the effects of rs75770066 as this reduces recruitment of HELB to sites of DNA damage. Reduced recruitment of D506G-HELB to double-strand DNA breaks and the concomitant increase in homologous recombination likely alters the levels of meiotic recombination, which affects the viability of gametes. Because menopause occurs when oocyte levels drop below a minimum threshold, altered repair of meiotic double-stranded DNA breaks has the potential to directly affect the age at natural menopause.
0

The Repertoire of Mutational Signatures in Human Cancer

Ludmil Alexandrov et al.May 6, 2020
+18
N
J
L
Somatic mutations in cancer genomes are caused by multiple mutational processes each of which generates a characteristic mutational signature. Using 84,729,690 somatic mutations from 4,645 whole cancer genome and 19,184 exome sequences encompassing most cancer types we characterised 49 single base substitution, 11 doublet base substitution, four clustered base substitution, and 17 small insertion and deletion mutational signatures. The substantial dataset size compared to previous analyses enabled discovery of new signatures, separation of overlapping signatures and decomposition of signatures into components that may represent associated, but distinct, DNA damage, repair and/or replication mechanisms. Estimation of the contribution of each signature to the mutational catalogues of individual cancer genomes revealed associations with exogenous and endogenous exposures and defective DNA maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes contributing to the development of human cancer including a comprehensive reference set of mutational signatures in human cancer.
0
0
Save
5

Comprehensive analysis of clustered mutations in cancer reveals recurrent APOBEC3 mutagenesis of ecDNA

Erik Bergstrom et al.Oct 24, 2023
+4
M
J
E
ABSTRACT Clustered somatic mutations are common in cancer genomes with prior analyses revealing several types of clustered single-base substitutions, including doublet- and multi-base substitutions, diffuse hypermutation termed omikli , and longer strand-coordinated events termed kataegis . Here, we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome sequenced cancers from 30 cancer types. While only 3.7% of substitutions and 0.9% of indels were found to be clustered, they contributed 8.4% and 6.9% of substitution and indel drivers, respectively. Multiple distinct mutational processes gave rise to clustered indels including signatures enriched in tobacco smokers and homologous-recombination deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, while the majority of multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, previously attributed to the activity of APOBEC3 deaminases, accounted for a large proportion of clustered substitutions. However, only 16.2% of omikli matched APOBEC3 patterns with experimental validation confirming additional mutational processes giving rise to omikli. Kataegis was generated by multiple mutational processes with 76.1% of all kataegic events exhibiting AID/APOBEC3-associated mutational patterns. Co-occurrence of APOBEC3 kataegis and extrachromosomal-DNA (ecDNA) was observed in 31% of samples with ecDNA. Multiple distinct APOBEC3 kataegic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kataegic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fueling the evolution of ecDNA.
0

Generating realistic null hypothesis of cancer mutational landscapes using SigProfilerSimulator

Erik Bergstrom et al.May 7, 2020
L
I
M
E
Performing a statistical test requires a null hypothesis. In cancer genomics, a key challenge is the fast generation of accurate somatic mutational landscapes that can be used as a realistic null hypothesis for making biological discoveries. Here we present SigProfilerSimulator, a powerful tool that is capable of simulating the mutational landscapes of thousands of cancer genomes at different resolutions within seconds. Applying SigProfilerSimulator to 2,144 whole-genome sequenced cancers reveals: (i) that most doublet base substitutions are not due to two adjacent single base substitutions but likely occur as single genomic events; (ii) that an extended sequencing context of +/-2bp is required to more completely capture the patterns of substitution mutational signatures in human cancer; (iii) information on false-positive discovery rate of commonly used bioinformatics tools for detecting driver genes. SigProfilerSimulator's breadth of features allows one to construct a tailored null hypothesis and use it for evaluating the accuracy of other bioinformatics tools or for downstream statistical analysis for biological discoveries.
Load More