YD
Ying Duan
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
4,772
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir

Sho Iketani et al.Nov 9, 2022
Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful against COVID-19 (refs. 1,2). However, because SARS-CoV-2 has evolved to become resistant to other therapeutic modalities3-9, there is a concern that the same could occur for nirmatrelvir. Here we examined this possibility by in vitro passaging of SARS-CoV-2 in nirmatrelvir using two independent approaches, including one on a large scale. Indeed, highly resistant viruses emerged from both and their sequences showed a multitude of 3CL protease mutations. In the experiment peformed with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Nevertheless, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones showed that these mutations mediated only low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (around 100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next-generation protease inhibitors.
1
Citation282
0
Save
378

Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir

Sho Iketani et al.Aug 8, 2022
Abstract Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful in reducing hospitalization or death due to COVID-19 1,2 . However, as SARS-CoV-2 has evolved to become resistant to other therapeutic modalities 3–9 , there is a concern that the same could occur for nirmatrelvir. Here, we have examined this possibility by in vitro passaging of SARS-CoV-2 in increasing concentrations of nirmatrelvir using two independent approaches, including one on a large scale in 480 wells. Indeed, highly resistant viruses emerged from both, and their sequences revealed a multitude of 3CL protease mutations. In the experiment done at a larger scale with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Yet, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L, or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones, each containing a unique mutation or a combination of mutations showed that the above precursor mutations only mediated low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (~100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Structural explanations are discussed for some of the mutations that are proximal to the drug-binding site, as well as cross-resistance or lack thereof to ensitrelvir, another clinically important 3CL protease inhibitor. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro , and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next generation protease inhibitors.
378
Citation22
0
Save
0

Structure of Mpro from COVID-19 virus and discovery of its inhibitors

Zhixing Jin et al.Feb 27, 2020
A new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan[1][1]–[4][2]. Currently there is no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (Mpro). Mpro is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus[5][3],[6][4]. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus Mpro in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of Mpro. Six of these inhibit Mpro with IC50 values ranging from 0.67 to 21.4 μM. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases where no specific drugs or vaccines are available. [1]: #ref-1 [2]: #ref-4 [3]: #ref-5 [4]: #ref-6
0

Non-noble metal catalysts for electrooxidation of 5-hydroxymethylfurfural.

Ying Duan et al.Sep 15, 2024
2,5-Furandicarboxylic acid (FDCA) is a class of valuable biomass-based platform compounds. The creation of FDCA involves the catalytic oxidation of 5-hydroxymethylfurfural (HMF). As a novel catalytic method, electrocatalysis has been utilized in the 5-hydroxymethylfurfural oxidation reaction (HMFOR). Common noble metal catalysts show catalytic activity, which is limited by price and reaction conditions. Non-noble metal catalyst is known for its environmental friendliness, affordability and high efficiency. The development of energy efficient non-noble metal catalysts plays a crucial role in enhancing the HMFOR process. It can greatly upgrade the demand of industrial production, and has important research significance for electrocatalytic oxidation of HMF. In this paper, the reaction mechanism of HMF undergoes electrocatalytic oxidation to produce FDCA are elaborately summarized. There are two reaction pathways and two oxidation mechanisms of HMFOR discussed deeply. In addition, the speculation on the response of the electrode potential to HMFOR is presented in this paper. The main non-noble metal electrocatalysts currently used are classified and summarized by targeting metal element species. Finally, the paper focus on the mechanistic effects of non-noble metal catalysts in the reaction, and provide the present prospects and challenges in the electrocatalytic oxidation reaction of HMF.