CG
Casey Greene
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
80
(60% Open Access)
Cited by:
4,866
h-index:
56
/
i10-index:
147
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Oncogenic Signaling Pathways in The Cancer Genome Atlas

Stacey Gabriel et al.Apr 1, 2018
+105
J
D
S

Summary

 Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.
6
Citation2,464
0
Save
2

Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

Mark Rubin et al.Apr 1, 2018
+753
M
L
M

Summary

 DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.
2
Citation870
0
Save
0

Understanding multicellular function and disease with human tissue-specific networks

Casey Greene et al.Apr 27, 2015
+12
A
A
C
Olga Troyanskaya and colleagues present genome-wide functional interaction networks for 144 human tissues and cell types. They identify important disease-gene associations by combining data from GWAS and tissue-specific networks. They also developed a webserver, GIANT, that includes multi-gene query capability, network visualization and analysis tools. Tissue and cell-type identity lie at the core of human physiology and disease. Understanding the genetic underpinnings of complex tissues and individual cell lineages is crucial for developing improved diagnostics and therapeutics. We present genome-wide functional interaction networks for 144 human tissues and cell types developed using a data-driven Bayesian methodology that integrates thousands of diverse experiments spanning tissue and disease states. Tissue-specific networks predict lineage-specific responses to perturbation, identify the changing functional roles of genes across tissues and illuminate relationships among diseases. We introduce NetWAS, which combines genes with nominally significant genome-wide association study (GWAS) P values and tissue-specific networks to identify disease-gene associations more accurately than GWAS alone. Our webserver, GIANT, provides an interface to human tissue networks through multi-gene queries, network visualization, analysis tools including NetWAS and downloadable networks. GIANT enables systematic exploration of the landscape of interacting genes that shape specialized cellular functions across more than a hundred human tissues and cell types.
0
Citation794
0
Save
0

Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing

Brett Beaulieu‐Jones et al.Jul 1, 2019
+4
C
Z
B
Background: Data sharing accelerates scientific progress but sharing individual-level data while preserving patient privacy presents a barrier. Methods and Results: Using pairs of deep neural networks, we generated simulated, synthetic participants that closely resemble participants of the SPRINT trial (Systolic Blood Pressure Trial). We showed that such paired networks can be trained with differential privacy, a formal privacy framework that limits the likelihood that queries of the synthetic participants’ data could identify a real a participant in the trial. Machine learning predictors built on the synthetic population generalize to the original data set. This finding suggests that the synthetic data can be shared with others, enabling them to perform hypothesis-generating analyses as though they had the original trial data. Conclusions: Deep neural networks that generate synthetic participants facilitate secondary analyses and reproducible investigation of clinical data sets by enhancing data sharing while preserving participant privacy.
0

Sci-Hub provides access to nearly all scholarly literature

Daniel Himmelstein et al.Mar 1, 2018
+4
J
A
D
The website Sci-Hub enables users to download PDF versions of scholarly articles, including many articles that are paywalled at their journal’s site. Sci-Hub has grown rapidly since its creation in 2011, but the extent of its coverage has been unclear. Here we report that, as of March 2017, Sci-Hub’s database contains 68.9% of the 81.6 million scholarly articles registered with Crossref and 85.1% of articles published in toll access journals. We find that coverage varies by discipline and publisher, and that Sci-Hub preferentially covers popular, paywalled content. For toll access articles, we find that Sci-Hub provides greater coverage than the University of Pennsylvania, a major research university in the United States. Green open access to toll access articles via licit services, on the other hand, remains quite limited. Our interactive browser at https://greenelab.github.io/scihub allows users to explore these findings in more detail. For the first time, nearly all scholarly literature is available gratis to anyone with an Internet connection, suggesting the toll access business model may become unsustainable.
0
Citation147
0
Save
0

Challenges and Opportunities in Studying the Epidemiology of Ovarian Cancer Subtypes

Jennifer Doherty et al.Jul 10, 2017
+3
C
L
J
Only recently has it become clear that epithelial ovarian cancer (EOC) is comprised of such distinct histotypes--with different cells of origin, morphology, molecular features, epidemiologic factors, clinical features, and survival patterns-that they can be thought of as different diseases sharing an anatomical location. Herein, we review opportunities and challenges in studying EOC heterogeneity.The 2014 World Health Organization diagnostic guidelines incorporate accumulated evidence that high- and low-grade serous tumors have different underlying pathogenesis, and that, on the basis of shared molecular features, most high grade tumors, including some previously classified as endometrioid, are now considered to be high-grade serous. At the same time, several studies have reported that high-grade serous EOC, which is the most common histotype, is itself made up of reproducible subtypes discernable by gene expression patterns.These major advances in understanding set the stage for a new era of research on EOC risk and clinical outcomes with the potential to reduce morbidity and mortality. We highlight the need for multidisciplinary studies with pathology review using the current guidelines, further molecular characterization of the histotypes and subtypes, inclusion of women of diverse racial/ethnic and socioeconomic backgrounds, and updated epidemiologic and clinical data relevant to current generations of women at risk of EOC.
0
Citation77
0
Save
0

Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE)

Aline Talhouk et al.Oct 15, 2020
+122
C
J
A
Abstract Purpose: Gene expression–based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. Experimental Design: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. Results: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with &gt;95% accuracy that was maintained in all analytic and biological validations. Conclusions: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications. See related commentary by McMullen et al., p. 5271
0
Citation50
0
Save
0

Privacy-preserving generative deep neural networks support clinical data sharing

Brett Beaulieu‐Jones et al.Jul 5, 2017
+4
C
Z
B
Abstract Background Data sharing accelerates scientific progress but sharing individual level data while preserving patient privacy presents a barrier. Methods and Results Using pairs of deep neural networks, we generated simulated, synthetic “participants” that closely resemble participants of the SPRINT trial. We showed that such paired networks can be trained with differential privacy, a formal privacy framework that limits the likelihood that queries of the synthetic participants’ data could identify a real a participant in the trial. Machine-learning predictors built on the synthetic population generalize to the original dataset. This finding suggests that the synthetic data can be shared with others, enabling them to perform hypothesis-generating analyses as though they had the original trial data. Conclusions Deep neural networks that generate synthetic participants facilitate secondary analyses and reproducible investigation of clinical datasets by enhancing data sharing while preserving participant privacy.
1

Comprehensive Cross-Population Analysis of High-Grade Serous Ovarian Cancer Supports No More Than Three Subtypes

Gregory Way et al.Dec 1, 2016
+6
C
J
G
Abstract Four gene expression subtypes of high-grade serous ovarian cancer (HGSC) have been previously described. In these early studies, a fraction of samples that did not fit well into the four subtype classifications were excluded. Therefore, we sought to systematically determine the concordance of transcriptomic HGSC subtypes across populations without removing any samples. We created a bioinformatics pipeline to independently cluster the five largest mRNA expression datasets using k-means and nonnegative matrix factorization (NMF). We summarized differential expression patterns to compare clusters across studies. While previous studies reported four subtypes, our cross-population comparison does not support four. Because these results contrast with previous reports, we attempted to reproduce analyses performed in those studies. Our results suggest that early results favoring four subtypes may have been driven by the inclusion of serous borderline tumors. In summary, our analysis suggests that either two or three, but not four, gene expression subtypes are most consistent across datasets.
1
Citation35
0
Save
0

Analysis of ISCB honorees and keynotes reveals disparities

Trang Le et al.Apr 14, 2020
+2
A
D
T
Abstract Delivering a keynote talk at a conference organized by a scientific society, or being named as a fellow by such a society, indicates that a scientist is held in high regard by their colleagues. To explore if the distribution of such indicators of esteem in the field of bioinformatics reflects the composition of this field, we compared the gender, name-origin, country of affiliation and race/ethnicity of 412 researchers who had been recognized by the International Society for Computational Biology (75 fellows and 337 keynote speakers) with over 170,000 researchers who had been the last authors on computational biology papers between 1993 and 2019. The proportion of female fellows and keynote speakers was similar to that of the field overall. However, names of East Asian origin have been persistently underrepresented among fellows and keynote speakers. Moreover, fellows and keynote speakers with an affiliation in the United States were overrepresented by a factor of 2.1; almost two thirds of this excess was accounted for by a deficit of 101 fellows and keynote authors from China, India, France and Italy. Within the US, we found an excess of white fellows and keynote speakers and a depletion of Asian fellows and keynote speakers.
0
Citation11
0
Save
Load More