KD
Kenneth Dinnon
Author with expertise in Coronavirus Disease 2019 Research
University of North Carolina at Chapel Hill, Rockefeller University, Public Health Department
+ 1 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(69% Open Access)
Cited by:
96
h-index:
28
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
544

SARS-CoV-2 D614G Variant Exhibits Enhanced Replication ex vivo and Earlier Transmission in vivo

Yixuan Hou et al.Oct 11, 2023
+17
P
S
Y
The D614G substitution in the S protein is most prevalent SARS-CoV-2 strain circulating globally, but its effects in viral pathogenesis and transmission remain unclear. We engineered SARS-CoV-2 variants harboring the D614G substitution with or without nanoluciferase. The D614G variant replicates more efficiency in primary human proximal airway epithelial cells and is more fit than wildtype (WT) virus in competition studies. With similar morphology to the WT virion, the D614G virus is also more sensitive to SARS-CoV-2 neutralizing antibodies. Infection of human ACE2 transgenic mice and Syrian hamsters with the WT or D614G viruses produced similar titers in respiratory tissue and pulmonary disease. However, the D614G variant exhibited significantly faster droplet transmission between hamsters than the WT virus, early after infection. Our study demonstrated the SARS-CoV2 D614G substitution enhances infectivity, replication fitness, and early transmission.
544
Paper
Citation47
0
Save
96

Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice

Andrea Pruijssers et al.Oct 24, 2023
+26
A
A
A
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC 50 = 0.01 μM). Weaker activity was observed in Vero E6 cells (EC 50 = 1.65 μM) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo , supporting its further clinical testing for treatment of COVID-19.
96
Citation20
0
Save
7

Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2

Alexandra Walls et al.Aug 13, 2020
+38
A
B
A
A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.
1

A model of persistent post SARS-CoV-2 induced lung disease for target identification and testing of therapeutic strategies

Kenneth Dinnon et al.Oct 24, 2023
+42
K
S
K
COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
1
Paper
Citation11
0
Save
7

Fc mediated pan-sarbecovirus protection after alphavirus vector vaccination

Lily Adams et al.Oct 24, 2023
+21
K
S
L
Two group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. The mechanisms of cross protection driven by the sarbecovirus spike, a dominant immunogen, are less clear yet critically important for pan-sarbecovirus vaccine development. We evaluated the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination did not prevent virus replication, it protected against lethal heterologous disease outcomes in both SARS-CoV-2 and clade 2 bat sarbecovirus HKU3-SRBD challenge models. The spike vaccines tested primarily elicited a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. We found non-neutralizing antibody functions that mediated cross protection in wild-type mice were mechanistically linked to FcgR4 and spike S2-binding antibodies. Protection was lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
7
Citation2
0
Save
4

Protective efficacy of rhesus adenovirus COVID-19 vaccines against mouse-adapted SARS-CoV-2

Lisa Tostanoski et al.Oct 24, 2023
+13
D
L
L
Abstract The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. Importance We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibits a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative Ad vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to i) evaluate the protective efficacy of RhAd52 vaccines and ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.
4
Citation2
0
Save
326

Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as vaccine candidate

Weina Sun et al.Oct 24, 2023
+10
S
S
W
Abstract Due to the lack of protective immunity of humans towards the newly emerged SARS-CoV-2, this virus has caused a massive pandemic across the world resulting in hundreds of thousands of deaths. Thus, a vaccine is urgently needed to contain the spread of the virus. Here, we describe Newcastle disease virus (NDV) vector vaccines expressing the spike protein of SARS-CoV-2 in its wild type or a pre-fusion membrane anchored format. All described NDV vector vaccines grow to high titers in embryonated chicken eggs. In a proof of principle mouse study, we report that the NDV vector vaccines elicit high levels of antibodies that are neutralizing when the vaccine is given intramuscularly. Importantly, these COVID-19 vaccine candidates protect mice from a mouse-adapted SARS-CoV-2 challenge with no detectable viral titer and viral antigen in the lungs. Research in context Evidence before this study The spike (S) protein of the SARS-CoV-2 is the major antigen that notably induces neutralizing antibodies to block viral entry. Many COVID-19 vaccines are under development, among them viral vectors expressing the S protein of SARS-CoV-2 exhibit many benefits. Viral vector vaccines have the potential of being used as both live or inactivated vaccines and they can induce Th1 and Th2-based immune responses following different immunization regimens. Additionally, viral vector vaccines can be handled under BSL-2 conditions and they grow to high titers in cell cultures or other species restricted-hosts. For a SARS-CoV-2 vaccine, several viral vectors are being tested, such as adenovirus, measles virus and Modified vaccinia Ankara. Added value of this study The NDV vector vaccine against SARS-CoV-2 described in this study has advantages similar to those of other viral vector vaccines. But the NDV vector can be amplified in embryonated chicken eggs, which allows for high yields and low costs per dose. Also, the NDV vector is not a human pathogen, therefore the delivery of the foreign antigen would not be compromised by any pre-existing immunity in humans. Finally, NDV has a very good safety record in humans, as it has been used in many oncolytic virus trials. This study provides an important option for a cost-effective SARS-CoV-2 vaccine. Implications of all the available evidence This study informs of the value of a viral vector vaccine against SARS-CoV-2. Specifically, for this NDV based SARS-CoV-2 vaccine, the existing egg-based influenza virus vaccine manufactures in the U.S. and worldwide would have the capacity to rapidly produce hundreds of millions of doses to mitigate the consequences of the ongoing COVID-19 pandemic.
326
0
Save
0

Trypsin treatment unlocks barrier for zoonotic coronaviruses infection

Vineet Menachery et al.May 7, 2020
+11
B
K
V
Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with SARS-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two MERS-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate infection of human gut cells, but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that addition of exogenous trypsin also rescues replication of HKU5-CoV, a second MERS-like group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate emergence potential of CoVs and offer a means to recover previously unrecoverable zoonotic CoV strains.
0

Combination attenuation offers strategy for live-attenuated coronavirus vaccines

Vineet Menachery et al.May 6, 2020
+7
H
L
V
With an ongoing threat posed by circulating zoonotic strains, new strategies are required to prepare for the next emergent coronavirus (CoV). Previously, groups had targeted conserved coronavirus proteins as a strategy to generate live-attenuated vaccine strains against current and future CoVs. With this in mind, we explored whether manipulation of CoV NSP16, a conserved 2'O methyltransferase (MTase), could provide a broad attenuation platform against future emergent strains. Using the SARS-CoV mouse model, a NSP16 mutant vaccine was evaluated for protection from heterologous challenge, efficacy in the aging host, and potential for reversion to pathogenesis. Despite some success, concerns for virulence in the aged and potential for reversion makes targeting NSP16 alone an untenable approach. However, combining a 2'O MTase mutation with a previously described CoV fidelity mutant produced a vaccine strain capable of protection from heterologous virus challenge, efficacy in aged mice, and no evidence for reversion. Together, the results indicate that targeting the CoV 2'O MTase in parallel with other conserved attenuating mutations may provide a platform strategy for rapidly generating live-attenuated coronavirus vaccines.
0

SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness

Kizzmekia Corbett et al.Dec 1, 2020
+56
S
D
K
A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.
Load More